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Transport in lungs and branched estuaries 

By R O N A L D  SMITH 
Mathematical Sciences, Loughborough University, LE11 3TU, UK 

(Received 29 September 1995 and in revised form 24 May 1996) 

Longitudinal mass transport in branched oscillatory flows is greater than in non- 
branched oscillatory flows. Here a derivation is given of a longitudinal diffusion 
equation which governs the long-term mass transport when there is perfect synchro- 
nism of the flow in adjacent branches. An explicit formula is obtained for the shear 
dispersion coefficient (effective longitudinal diffusion) when a sinusoidal flow excur- 
sion crosses a junction in geometrically self-similar flows with negligible secondary 
flow. A single junction crossing can be sufficient to double the shear dispersion as 
compared to an unbranched flow at the same frequency. 

1. Introduction 
High-frequency ventilation of the lungs offers the prospect of a gentle yet efficient 

means of respiration during surgery, with particular advantages for premature babies 
whose immature lungs are not very flexible (Bohn et al. 1980; Rossing et al. 1981). 
This prospect has led to a large number of experimental investigations in vivo and in 
vitro, concerned with understanding, calibrating and optimizing the efficiency. Existing 
theories for oscillatory dispersion in straight tubes (Chatwin 1975; Watson 1983) have 
been used as an aid in the scaling and interpretation of results. The key feature is that 
for branched flows the effective longitudinal mixing rates are systematically higher 
than for the corresponding non-branched flows (Paloski, Slosberg & Kamm 1987, 
figure 7). 

For steady river flows with branches and with islands Daish (1985) and Smith (1995), 
respectively, have calculated similar high local shear dispersion coefficients. They 
point out that it takes a substantial distance along a branch for the junction-induced 
distortion of the concentration profile across the flow to adjust to the new geometry. 
It is this additional distortion that leads to the shear dispersion exceeding the non- 
branched value. Flow oscillations, in estuaries or lungs, could inhibit the distortion 
and related dispersion by reversing more rapidly than the cross-sectional mixing time 
(Chatwin 1975; Watson 1983). So, the present calculations focus upon regimes in 
which neither the flow excursions nor the cross-sectional mixing rate can be neglected. 

The outcome of the first half of this paper is a diffusion equation along the 
branched network for the cycle-averaged concentration. The effective diffusivity varies 
throughout the network and depends upon the across-flow distortion experienced 
locally within a single flow excursion. For estuaries there is also a mean drift 
associated with fresh-water inflow from rivers. The evaluation of the across-flow 
distortion (and consequent shear dispersion coefficient) for a class of branching flows 
is achieved in the second half of this paper. A simple estuarial example is used to 
demonstrate the magnitude of the increased dispersion associated with branching. 
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FIGURE 1. Definition sketch for metric coefficients and for the labeling of branches. 

2. Interior volumes 
The geometry of a branching flow system is a first major obstacle to any mathe- 

matical theory (Daish 1985; Smith 1995). In lungs and in estuaries the narrowness 
of the channels gives a clearly defined principal x-direction. To avoid the need for 
general tensor analysis, we assume that there is an orthogonal coordinate system 
(x,y,z). The metric coefficients ml, m2, m3 relate the distance increment ds to the 
coordinate increments dx, dy, dz (see figure 1): 

(2.1) 

For example, in shallow water flows with depth-following coordinates, the bed and 
free surface would be designated z = 0 and z = 1. Hence, m3 would be the time- 
dependent total water depth. If also m2 = B,  where 2B is the instantaneous width, 
then the banks could be y = f l .  For a network of flexible cylindrical tubes y = r / a  
could be the fraction of the local radius a(x,t) with m2 = a and z = 8 the angular 
coordinate with m3 = ay. 

No index is needed to identify the outermost channel. Its inner and outer ends are 
denoted x- and x+ (see figure 1). Progressing inwards, at each junction we use an 
index i to label the channels along a branching route. If at N successive junctions the 
selection of channels is il, i2,. . . , iN then we can use the multi-index 

ds 2 = m12dx2 + m22dy2 + m32dz2 . 

P = il,i2,...,iN or PN p~-i , iN (2.2) 

to identify the channel (Smith 1995). We denote the longitudinal position of the inner 
and outer ends of a channel as xi , xz with the obvious matching xzN = The 
notation 

P’ d P (e4. P N + l  < P N )  (2.3) 
is used to indicate that the multi-index p’ is equal to or extends the multi-index p. In 
physical terms, the channel p’ is either the channel p itself or one of the tributaries 
inland (further into the lungs or to the left in figure 1) from the channel p. 

Within a channel we identify a cross-section as Q,. The derivative of the volume 
between adjacent x-contours is denoted 



Transport in lungs and branched estuaries 3 3 3  

Averaging denoted by an overbar is defined: 

The cross-sectional area is given by the product A,my'. For ease of interpretation, it 
is convenient if the derivative of the volume between adjacent x-contours is the same 
as the cross-sectional area, i.e. if m,' = 1. If so, then x has the natural interpretation 
as a distance coordinate, while the cross-sectional coordinates y ,  z remain at our 
disposal (to accommodate width, depth or shape changes with time or with position). 

The instantaneous volume of water in a subsection of an estuary interior to a 
longitudinal position x in the particular channel p (or volume of gas interior to part 
of the lungs) is the summation of the volume derivatives over all interior branches 
and in the channel p out as far as the position x : 

__ 

V J x ,  t )  = 1 A,((x, t)dx + l: A,(x', t)dx' . (2.6) 
,'<, p' 

The velocity of a frame of reference moving with fixed V, within a given channel p 
will be denoted ur). An immediate consequence is that 

On moving outward across a junction from xlf, to x iN7, ,  the merging of channels (and 
merging of the associated interior volumes) causes a jump in the interior volume. 

An infinite geometric series of individually straight, branching channels provides 
a particularly simple example. The length from alveolus to mouth is denoted L and 
the area just before the mouth is A .  At each branching there is splitting into M 
sub-channels with area ratio a and length ratio A .  At the Nth generation there are 
M N  identical channels all with area aNA and length A N ( l  - A)L. The tide going in 
(or inhalation) can be modelled by an increasing value of a, A, A or L. For the total 
volume to remain finite, the product M a A  must be less than unity. Within each of 
the M N  members of the Nth generation, with AN+' L d x < A N L ,  the formula for the 
interior volume is 

(1 - A)LA 
Vpw(x, t )  = M(aA)N+' + a N ( x  - LAN+')A , 1 - M a n  

3. Equations for flow and concentration 
The rates at which the flow crosses the coordinate contours are denoted (u,u,w) 

and the corresponding velocity components, relative to any contour movement, are 
(mlu,mzv,m~w). For gas at sub-acoustic frequencies and at pressures close to atmo- 
spheric, density changes are negligible. The incompressibility condition satisfied by 
the flow field is 

dt(mlmzm3) + dx(mlm2m3u) + dy(mlm2m3U) + d~(mlm2m3W) = 0 . (3.1) 
At lateral boundaries the normal component of relative velocity equals that of the 
boundary. In practice it is convenient to select the metric coefficients ml, m2, m3 

so that the coordinate contours move with the boundary. If so, then the normal 
component of relative velocity would be zero. In the present paper we shall not be 
concerned with calculating the flow: it will be regarded as being given. However, the 
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constraint (3.1) upon the flow allows alternative formulations of the concentration 
equation. 

Since we are assuming there is no flow through the lateral boundaries, the cross- 
sectionally averaged conservation of volume can be stated : 

d,(A,) + dx(ApiIp) = 0 . 

0 = Ap(Gp - u r ) )  - &Qp = flux out - flux in , 

(3.2) 

(3.3) 

where &Qp(t)  is the summation of the river volume fluxes (net gas volume flux across 
the alveoli) for those tributaries which eventually feed into the channel p. The 
parameter E will be used subsequently both to characterize the net volume fluxes as 
being small relative to the periodic flow oscillations and to characterize the narrowness 
of the channels. 

If the principal values t c l ,  K ~ ,  tc3 for diffusion correspond to the x, y, z coordinate 
directions, then the advection-diffusion equation for the tracer concentration c can be 
written 

It is an elementary consequence that 

The normal flux across lateral boundaries is assumed to be zero. If at junctions 
the adjustment of the geometry and flow is rapid, compared with mixing across 
the channels, then it may be appropriate to use different coordinate systems in the 
different channels. If so, it is important that continuity of concentration is preserved 
by appropriate particle-following matching (superscripts - or + indicate the direction 
from old to new channel): 

(3.5a, b )  y p,r . = y:( p,L ~ p ,  z p ,  t )  > 

~p = Y ; ( ~ p , i ,  zp . i ,  t )  > 

zp,i = ZJyp7 zp, t) 7 

or 
zp = z L i ( ~ p , i >  z p , i ,  t )  . (3.5c, d )  

The incompressibility condition (3.1) allows the advected derivatives in equation 
(3.4) to be written in conservation form. The cross-sectionally averaged mass conser- 
vation equation is then 

Ap(dtZ + iI,d,Z) + d,(A,(c - E)(u - Up)) - a, ( A p.> --a c = 0 . (3.6) 

In $ 5  a Taylor (1953) type of solution is obtained for (c - 2 )  in terms of a,?. This 
would change (3.6) into an advection-diffusion equation. One of the key results of 
this paper (6.6), is a flow-splitting, volume-following, time-cycle-averaged version of 
(3.6). 

4. Volume-following coordinate 
Another major obstacle that we have to overcome is that to a first approximation 

the oscillatory bulk flow merely carries the concentration back and forth at velocity U p  
without any net dispersion. In the absence of branching (Smith 1977), we can suppress 
these rapid oscillations in concentration by using a volume-following coordinate. 



Transport in lungs and branched estuaries 335 

On the flood tide (inhalation) the tracer distribution gets split up at every branching. 
Then on the ebb tide (exhalation) the different parts of the tracer distribution come 
together and mix. A possible dispersion mechanism (Schijf & Schonfeld 1953) is that 
there could be non-synchronous ventilation such that the moving coordinates in the 
different branches get displaced from each other depending upon the phase differences 
between the flows. Here we shall exclude that dispersion mechanism by assuming that 
at leading order there is perfect synchronism of the flow in the merging branches. 
The fraction of the oscillatory volume flux A,url entering or leaving each branch is 
assumed to be proportional to the volume upstream of that branch. No matter which 
splitting is followed, the volume-following time-cycle average of the frame velocity is 
zero, ($') = 0. The angle brackets (. . .) denote time averaging. 

Within the single outermost channel, we use the volume to define a volume-following 
coordinate: 

The assumption about the division of the oscillatory flow between the branches 
requires us to use a stretched volume coordinate in tributaries (bigger stretching for 
smaller interior volumes) : 

(4,2a, b )  

The inner ends of all channels are at < = 0. Unlike the interior volumes V,, the 
coordinate < has been constructed to be continuous across junctions. The synchronism 
assumption implies that P, is independent of time t and that at the merger of two or 
more channels, the product P,A,ur) has the same value in all of those channels. 

For the example of an infinite geometric series used at the end of $2 ,  all the 
branches at a particular generation are identical and the 5-construction is almost 
trivial. The individual quotients in the product (4.2h) all have the value M ,  so we 
have PpN = M N .  Within each of the M N  members of the Nth generation, with 
AN+'L < x < A N L ,  the formula for the volume-following coordinate becomes 

( 1  - A)LA < = + (MC(y(x - LAN+')A . 
(1 - M a i l )  (4.3) 

Figure 2 shows the piecewise linear relationship between the volume-following coor- 
dinate 5 and the conventional longitudinal coordinate x in the special case A = 0.5, 
M = 2. Small dots indicate the positions of junctions. If the flood tide (inhalation) 
is modelled by increasing a, then the fluid at a fixed <-value is drawn inwards to a 
smaller x-location. On the ebb (exhalation) CI decreases back to the original value 
and the fluid again moves outward to a larger x-location. The to-and-fro movement 
at velocity u;', may involve crossing several junctions, particularly for large ct with 
small </LA.  

To avoid spurious calculations outside the mouth, we specify low tide (minimum 
lung volume) tlow as the reference time. At that time, a given <-value and given 
multi-index selection of channels p define a unique channel. The connectivity at tlow 
determines how the concentration and concentration flux in different branches of the 
network should be matched. At another time the fluid will have retreated further 
from the mouth. If 5 is closer than an excursion distance from a junction, then the 
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FIGURE 2. Longitudinal position as a function of the volume-following coordinate 5 along 
bifurcating channels ( M  = 2) with fixed length ratio A = 0.5 but varying area ratios a. 

initial selection of channels p will have become split into several p’ channels. To 
accommodate this oscillatory splitting, we introduce an area-weighted cycle average, 
denoted with a tilde, involving a summation restricted to those p’ channels: 

In the volume-following frame of reference, the equation for the concentration can 
be written 

The p’ subscripts emphasize that in the moving frame, as the flow retreats/advances 
and the channels split/merge, the values of certain coefficients can jump in value. 
However, as 5 varies across junctions, the concentration c( 5 ,  y, z ,  t )  must remain 
continuous. 

5. Volumetric centroid displacement 
By construction, the time-dependent distortions and splitting of the flow geometry in 

the volume-following 5 frame of reference eliminates the most rapid time-dependence 
of the concentration. To account for the relative narrowness of the channels and for 
the slow time evolution of C, we introduce a longer length scale x and a second time 
scale : 

(5.1) 2 X=&l, T = & t .  

Paying careful attention to there being two co-existing time coordinates t and T 

we can re-write the advection-diffusion equation (4.5) in an extended and scaled 
form : 
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In the spirit of the work of Taylor (1953), we assume that sufficient time has elapsed 
that the concentration varies slowly with respect to the short length and time scales 
( y ,  z ,  t )  and departs only by order E from the volume-following, area-weighted cycle 
average C. We can regard the residual concentration fluctuations across the flow as 
being forced by the right-hand-side terms in (5.2) : 

with 

= mlm2m3(u - i ipJ)PpjAp8 . (5.4) 
The volumetric centroid displacement or distortion function G accommodates the 
gradual tendency for the concentration distribution to become displaced outward (or 
inwards) where the outward flow is greater (or less) than the cross-sectional average 
outflow. At each tributary (alveolus) feeding the system we require that G is initially 
zero. As x varies, the splitting of the geometry in the moving frame of reference occurs 
at slightly different times. Importantly, G(x,  y ,  z ,  t )  remains continuous. Integrating 
equation (5.4) across a sub-channel, allows us to show that ApGP, is zero along the 
innermost channels and constant along subsequent channels. It IS possible that in 
individual sub-channels G, # 0 . However, the continuity of G across junctions 
allows us to conclude that the weighted sum G, is zero. The synchronism assumption 
requires that when the topology splits PP~A,~iiPr is the same for all sub-channels and 
for the merged channel. Thus, the right-hand-side forcing term in equation (5.4) 
adjusts more in shape than in size. 

If we multiply both sides of (5.4) by G(x ,y , z ,  t ) ,  and integrate across a sub-channel7 
then we can derive the identity 

P,, A,: lp, (u - iiPl)GdS2 = 1 2 at lp, G2dQ + lp, { ,c2 (g ) * + ~3 (g ) '} dS2 . 

(5.5) 

We use the final integral to define a quantity SPf, with units L 6 / T ,  which is identified 
in the next section as being the volumetric shear dispersion coefficient: 

Any geometrical or flow property, such as splitting, that increases the gradients 
of the volumetric centroid displacement function G necessarily increases the shear 
dispersion. 
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6. Shear dispersion equation 
Integrating the order-E2 terms in (5.2) over the sum of all the sub-channels, using 

the identity (5.5) then taking volume-following cycle average, we obtain an advection- 
diffusion equation : 

It is this equation that identifies g,, as being the cycle-averaged volumetric shear 
dispersion coefficient. In the unscaled ( r , t )  coordinates the mean flow Q,,I term 
recovers its E multiplier: 

It is conventional to quantify the centroid displacement in terms of a longitudinal 
distance and the effects of shear as an augmented longitudinal diffusivity (Taylor 
1953). By analogy with the discontinuous interior volumes V,, we use the tt,, cross- 
sectional area A,(?), and the associated product P,, to define a discontinuous local 
centroid displacement (distance) function: 

The corresponding local instantaneous shear dispersion coefficient for an individual 
channel cross-section is 

The shear dispersion term on the right-hand side of (6.2) can then be written 

A factor (P,,fAr/(m;'),,r)2 converts the distance measure D,,: of dispersion, with units 
L2/T, to the volumetric measure SP/.  If as in lungs the total area increases away from 
the mouth, then by mass conservation the velocities decrease and the products 
P,,,Ag increase. Hence the reduction in D ,  away from the mouth is much more severe 
than the reduction in g,,. For example, Paloski et al. (1987) conducted experiments 
with branching identical Y-tubes. In their figure 4, the reduction in D,,r at each 
generation away from the mouth corresponds approximately to the factor of 4 jump 
in (<,,rAlrt)2. Thus, for their experiments , g,, does not vary markedly. Of course, the 
relative increase in dispersion by comparison to non-branching channels, by up to a 
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factor of 3 as found by Paloski et al. (1987), is the same whichever measure D,,, or SP 
is used. 

Since the junction locations in the volume-following coordinates ( 5 ,  t )  are inherited 
from the geometry at low tide (minimum lung volume), we can use the x-coordinate 
and volume derivatives A, at that reference time tlow to determine an (x, t )  counterpart 
to equation (6.2): 

- 

This formulation (6.6) of the shear dispersion equation can be interpreted as a flow- 
splitting, volume-following, time-cycle-averaged version of (3.6). The p' terms are 
periodic and the p terms are tlow values. For a single channel with rapid mixing 
Shinohara et al. (1969) and Smith (1977) could justify dividing through by the area 
A,. prior to taking the cycle average. Thus, they obtained quadratic A;, rather than 
cubic A:, weighting for the effective long-term dispersion coefficient and other minor 
departures from (6.6). 

In (6.2) or (6.6), the river volume fluxes Qz (net gas volume fluxes across the alveoli) 
result in an outward drift. The P,(APr-weighting emphasizes the volume fluxes into 
channels with low oscillatory velocity. The awkward form of the longitudinal diffusion 
terms is a consequence of the local shortening in regions of locally large cross-sectional 
area and the abrupt change in length scale for longitudinal concentration gradients 
(and changed numbers of channels) every time a junction is crossed. Outward 
increases in area (dAPl/dx > 0) result in augmented outward diffusive transport, 
which takes the form of an apparent outward drift velocity in (6.2) or (6.6). 

At the low-tide (minimum lung volume) position of junctions, the change in 
numbers of channels involved in the p' summations necessarily implies jumps in the 
coefficients in equation (6.2) or (6.6). Across junctions there has to be matching of the 
cycle-averaged concentration C and matching of the sum over the merging branches 
of the fluxes: 

with the corresponding flux in the merged channel. At each tributary (alveolus) 
feeding the system and at the mouth, typical end conditions would be imposed values 
for the cycle-averaged fluxes or for the cycle-averaged concentration C = b,(t). 

7. Modes for self-similar channels with weak cross-flow 
The complexity of (5.4) for the volumetric centroid displacement, with time- 

dependent splitting and re-joining, is a formidable obstacle to the implementation 
of the advection-diffusion equation (6.6). In this section we simplify the equation, 
geometry and transverse diffusion to achieve a formal series solution. 
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by diffusion (K&, ~$3,): 
As a first simplification, we assume that in (5.4), the cross-flow (0, w) is dominated 

In the ( y ,  z)-plane the normal component of the flux (-7c2dyG/m2, -K3d,G/m3) is zero 
on lateral boundaries. When the flow geometry in the moving frame of reference 
splits up or re-connects, G must remain continuous (following the particles if there 
is a short velocity adjustment region). Pedley & Kamm (1988) have investigated the 
opposite limit of strong secondary flows, but not the effect of splitting. 

As a second simplification we assume that between splitting and re-joining events 
the geometry is self-similar, with changes in scale accommodated via the metric 
coefficients m2, m3. If in addition, the transverse diffusivities K ~ , I C ~  are self-similar, 
then it is convenient to introduce a set of eigenmodes {y@’(y , z ) }  corresponding to 
separation of variables with respect to the longitudinal coordinate : 

with 

w P r  (O) = 1 , A:) = 0 ,  and A$)(t,t) < A$’( ( , t )  < ... (7 .24 e , f  1 
The eigenvalues {A$)} will be systematically larger in the narrower channels further 
from the mouth. If the same similarity extends to other sub-channels, then a suitable 
shift of ( y , z )  coordinates will allow us to use the same eigenmodes y(*) and the p’ 
subscripts can be suppressed. 

For circular cylindrical tubes of radius a with isotropic diffusivity K and symmetry 
about 19 = 0, the non-constant modes involve Bessel functions. It is not until k = 3 
that an axisymmetric mode arises: 

Thus, non-axisymmetric concentration perturbations induced at branching are re- 
markably long lasting. Such asymmetric modes can contribute significantly to the 
shear dispersion, even if the velocity profiles are symmetric. 
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Within the p’ sub-channel, we can represent the shear, volumetric centroid displace- 
ment function and volumetric shear dispersion in terms of the modes 

k=l 

(7.4a, b )  

(7.4c, d )  
k=l  k=l  

G,,! does not contribute to the shear dispersion, does not interact with the other 
modes (when summed over all the sub-channels) and does not need to be calculated. 

The three-dimensional second-order partial differential equation (7.1) is replaced 
by a series of two-dimensional first-order equations : 

(7.5a, b )  d tGpt  = 0 , d,G$’ + A;’G$) = u:’(<, t)P,,A,, . 

For the high-order modes or narrow channels with large A:’, we can estimate that 

Thus, S, and the related shear dispersion tend to be dominated by the first few modes. 
If for a given low-tide (minimum lung volume) position 5 in the p channel the 

volume-following geometry does not divide, then G, remains zero and the solutions 
for the higher amplitudes can be written 

GF)((, t )  = PP Lz A , ( ( ,  t’)u$)(<, t’) exp { - .6’ A$)([, t ” )d t ” }  dt‘. (7.7) 

It is only modes with non-zero velocity forcing u:’ that contribute to the centroid 
displacement or to the shear dispersion (7.4d). For example, axisymmetric flows in 
non-branching cylindrical tubes only involve axisymmetric modes. 

If the attenuation rates Af’ and the volume derivatives A,  are constant and if the 
self-similar flow is sinusoidal, then the non-branching result (7.7) yields a time-lagged 
sinusoidal result for the volumetric centroid displacement : 

For low frequencies w < A:), the centroid displacement component GI”) is in phase 
with the current. Later in this paper the branching solution for G$O will be written 
as a perturbation from the solution (7.8b). In (7.8c,d), the denominator quantifies the 
effect of rapid flow oscillations (large w )  in reducing the shear dispersion (Chatwin 
1975; Watson 1983). Since P,A,Zi, is the same in sub-channels as in the main channel, 
the between-channel changes in the reference values $(o, a) are linked to changes 
in the decay rates A!’. In the present context, the symbol a signifies more than an 
excursion distance from junctions, i.e unaffected by branching. 
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8. Allowing for branching in the modal solution 
For a particular low-tide (minimum lung volume) position i; in the p channel 

we denote the volume-following splitting times on flood tide (inhalation) by t;(t), 
t i ( < ) .  The corresponding re-connection times on ebb tide (exhalation) are denoted 
t$(<),  t , f(<).  If the adjustment of geometry and velocity across junctions takes place 
rapidly relative to cross-channel mixing, then at the transition times we can use the 
particle-following matching (Daish 1985) : 

ffi 

G!(i(xpt,i+, t )  = z F ~ ; ~ ) ( t ) G $ ) ( x p ~ - ,  t )  used on flood (inhalation) , @la) 
k = l  

M m  

G$’(xpJ-, t )  = E~~~’(t)G:~,i(”p,,i+, t )  used on ebb (exhalation) , (8.lb) 
i=l  /=1 

with 
M o o  

(8 .1~)  
i=l 1=1 

The flood and ebb coefficients F:,’;)(t) and Er;?(t) involve integrals of products of 
1111) for the outer channel and y!!i for the inner sub-channel, with particle-following 
matching of cross-stream positions (3.5) : 

(8.2a) 

(8.2b) 

Outside the range of ( Y i i ,  Z;,ij the function is extended by zero (i.e. where the 
fluid does not come from the p , I  sub-channel). Self-similarity of the velocity profile 
implies that F:;:) and E:;? are independent of time. 

Figures 3 and 4 show the first few flood and ebb coefficients, as calculated in $12, 
for a sub-channel p, 1 which exchanges a fraction (1 + 4)/2 of the oscillatory volume 
flux from a similarly shaped channel p. In the limit as 4 tends to -1 the sub-channel 
is vanishingly small and the matching coefficients are all zero. Conversely, as 4 tends 
to 1, the sub-channel is indistinguishable from the merged channel so the diagonal 
coefficients Fff), E r t )  tend to 1 while the off-diagonal terms tend to zero. 

On flood tide (inhalation) the matching @la) gives the starting values at time t;(t) 
for the amplitudes of the modes in the p’,i sub-channel. Until a further splitting or 
subsequent re-connection, the volume-following solution for a given value of < can 
be written 

At time ts (<) on ebb tide (exhalation) when the p’,i sub-channels reconnect to form 
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P 

-0.5 0 0.5 
Asymmetry, Q 

FIGURE 3. Flood (inhalation) matching coefficients as a function of the asymmetry. 

-0.5 0 0.5 
Asymmetry, Q 

FIGURE 4. Ebb (exhalation) matching coefficients as a function of the asymmetry. 

a p’ channel, it is the matching (8.lb) that provides the starting values: 

For high-order modes or narrow channels with I$’ larger than the frequency of 
oscillations, there is exponentially fast approach to the non-branching result (7.7). 
When there is branching, the splitting and merging and E$,’i) terms in the 
formulae (S.la,b) for G:j,i(t;), G$)(t:) allow there to be contributions to the volumetric 
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Excursion 
distance 

I Position mouthward of junction :. 
FIGURE 5.  Cycle-averaged effective area across the low-tide location of a junction. 

centroid displacement from modes with or u?) identically zero. In particular, for 
cylindrical tubes with axisymmetric velocity profiles, the relatively long-lasting non- 
symmetric modes (7.344 can be induced at branching. 

For steady flows with junctions Saffman (1969), Ultman & Blatman (1977), and 
Adler (1985), made the assumption that at every junction there is vigorous and 
complete mixing. This corresponds to setting G!:i(t;), G$)(tz) equal to zero in the 
above equations (8.3), (8.4) or equivalently, to setting FF,’:), EF;? equal to zero. 

9. Sinusoidal flows along piecewise-uniform channels 
We assume that the cross-sectionally averaged flow is sinusoidal : 

(9.la, b )  

The tidal phase 0, = ot; of the first splitting on the flood (inhalation) increases 
from 0 to n as the low-tide (minimum luyg volume) position moves from a junction 
x, to a full excursion mouthwards x, + 2 U / o :  

0, = arccos ( 1 - w(xi .”)) , with return time ot; = 2n - 0, . (9.2a, b )  

The time spent in the p channel is proportional to 0, and the time spent in 
a p,i sub-channel is proportional to O,,i = 7-c - 0,. Thus, the volume-following, 
cycle-averaged effective area term in (6.2) is given by 

With respect to 0,/rc, there is a linear transition from the sum of the areas A,,,i of 
the sub-channels to the area A, of the merged channel. Figure 5 shows the effective 
area as the low-tide (fully exhaled) position x moves outward across a junction x, 
from either of two identical sub-channels to a merged channel of the same area 
(corresponding to the experimental configuration used by Paloski et al. (1987). The 
steepness of the graph near the junction or near an excursion limit mouthwards of 
the junction is a consequence of the comparatively long time as the flow turns in the 
main or sub-channels respectively. 

For piecewise-uniform channels, with .I$’ and A,, constants, the between-junction 
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solutions (8.3), (8.4) can be written both as a perturbation from the vigorous mixing 
limit and as tending towards the non-branching result (7.8b) : 

~ $ ) ( t )  = f F ) ( t )  + exp{-A$)[t - t;]> ( 6 ~ ; )  - f,, (k) it,,))) + . (9.4b) 

When there is just one splitting, we can use equations (9.4a,b), (S.la,b) at successive 
rejoining and splitting times t l  and (2n/o + t i )  to derive relationships between SG;,! 
and 6Gf) needed to guarantee periodicity: 

M m  

(9.5a) 

k = l  

For compactness, we have used the notational shorthand : 

22“ 22(? 
d k )  I( = exp { --$@,} , e!: = exp { --/O,,j} with O,,i + 0, = n , (9.6a,b) 

A ,  ( k !  - - f ,  (k) ( t ,  -1 - e, (k) f ,  k !  (t,) + 2 A;,: = -f:,kq) + e:,lf:,ktJ . (9.6c,d) 

Hence, the exponential attenuations e t )  or e:,: respectively are close to unity and the 
changes in amplitudes A t )  or A!,: respectively are near zero, when little time is spent 
in the p channel or the p, i sub-channels. By construction 6Gf) and SG$ are zero in 
the limit of complete mixing at junctions. In general the linear equations (9.5) would 
need to be solved numerically. Conveniently, in $12 an approximate solution is given 
which is accurate throughout the regime in which the 6Gf) and SG;,: terms contribute 
significantly to the volumetric shear dispersion. 

When there is one splitting in the flow cycle, the volumetric shear dispersion term 
in (6.2) has the lengthy but explicit formula 
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In the special case of complete mixing at junctions, the final six summation terms 
are zero. The final two terms are distinctive in that they do not involve the shear 
contributions U:!, U f ) .  When the flow is axisymmetric, it is via these positive-definite 
junction terms that the non-axisymmetric modes ( 7 . 3 4  can augment the shear 
dispersion. 

10. Shorter formula for the single-junction shear dispersion 
For compactness, we introduce more notational shorthand : 
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Completing the square in equation (9.7) with respect to 6GF) and SG:,! leads to the 
comparatively short expression 

(10.2) 

For the trivial case of negligible change of area or of velocity profile, we have 

6G,, ( k )  - - - s,, ( k )  - c,, ( k )  , 6 ~ " )  ~,~ = s,,,; (1) + c , , , ~  (0 ,A,,,l = A ,  ,and P,,l = P, . (10.3~-d) 

It can be verified from (10.2) that the attenuation terms e t ) ,  e:,! cancel exactly and 
the volumetric shear dispersion agrees with the no-junction result (7.8). Another 
easy deduction is that the merged channel contribution to the shear dispersion is 
minimized if 

(10.4) 

This condition is distinct from either well-mixed junctions or the trivial case (10.34. 
In the limit as the phase at splitting 0, tends to zero, the volume-following frame 

of reference is only in the merged p channel for a vanishingly small fraction of the 
flow cycle. Physically this implies that the effective shear dispersion should become 
independent of the detailed properties of the merged channel as x -+ x,: 

J \ M  

At the excursion distance mouthwards of the junction, the volume-following frame 
of reference only enters the sub-channels for a vanishingly small fraction of the 
flow cycle. Thus, the effective shear dispersion becomes independent of the detailed 
properties of the p, i sub-channels as x -+ x, + 28/01: 
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Position mouthward of junction 

FIGURE 6. Period-averaged, volume-following shear dispersion relative to that of a non-branched 
oscillatory flow near a Y-junction with all three channels identical. Particle-following matching 
yields the continuous curves while a well-mixed junction yields the dashed lines. 

The final junction-related term is relatively unimportant in the limits of low frequencies 
o = 0 and of negligible departure from the uniform channel result (7.8b). 

11. Low- and high-frequency limits 
any effect of 

matching or vigorous mixing at the junctions has a time range of influence short 
relative to the flow cycle. The volumetric shear dispersion (9.7) is dominated by just 
the first two terms : 

For low-frequency oscillations, with o much less than $'If"' or 

(11.1) 

Thus, there is a transition between the area-weighted sum of the no-junctions results 
(1 1.1) either side of the junction. The magnitude of the area-weighted shear dispersion 
is not just related to the time in each reach, but also depends (5.6) upon the square 
of the centroid distortion G experienced in each reach . There is not the linear (nor 
even quadratic) dependence upon O,, that was exhibited by the effective area (9.3). 
Mouthward of a junction, the low-frequency volumetric shear dispersion $(O, x) does 
not exhibit a simple linear transition with respect to either 0, or x. 

In assessing the combined effect of oscillations and junctions upon the volumetric 
dispersion, it is appropriate to use the no-junction volumetric shear dispersion (1 1.1) 
as a comparator: 
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Figure 6 shows results corresponding to the special case studied experimentally by 
Paloski et al. (1987), in which the two sub-channels and the merged channel all have 
the same areas and decay rates. 

The curve labelled w, = 0 in figure 6 shows the low-frequency results. Although 
the volumetric shear dispersion for the sub-channels is the same as that for the 
merged channel, the quotient (11.2) deviates from 1. Close to the junction the 
volume-following frame of reference is only in the single merged channel near the 
turn of the flow, when the low-frequency centroid distortion G is small and the 
diffusion-weighted mean square S, is extremely small. Thus, halving the already 
small contribution to ( C A P I S P I )  does not cause much reduction, but the temporary 
halving of area lowers (C A,') more noticeably. Hence, the cycle-averaged volumetric 
shear dispersion $,(o, x) is slightly increased. Conversely, near the excursion distance 
mouthward from the junction, the volume-following frame of reference only moves 
into the pair of sub-channels at the other turn of the flow, when the low-frequency 
centroid distortion G is again small and the squared quantities S,,*, S,,2 are extremely 
small. So doubling a small contribution to (CA,IS ,I )  is not significant by comparison 
to the doubled area contribution to (CAPr). So near the excursion distance, the 
cycle-averaged volumetric shear dispersion $,(a, x) is decreased. 

As the frequency increases, o exceeds A!,! or A?) for more and more of the modes. 
The formal limiting version of (10.2) for high frequencies is 

2 
P, A, ULk) 

(11.3)  +$A, 0 "  XA!) (hG$) - [a - COS(@,)] ) . k = l  0, 

The top curves in figure 6 (labelled cop = 100) illustrate the high-frequency behaviour. 
By contrast to the low-frequency limit (ll.l), there is strong dependence upon the 
nature of the matching, even at the two end points O,,i = TC and 0, = 7t. By 
re-starting the dispersion process, vigorous mixing at junctions can make the centroid 
displacement be systematically one-signed (rather than oscillate about zero) with an 
increased mean square, i.e. larger shear dispersion (5.6). Over the transition regime 
the average dispersion at high frequencies is about twice that of a non-branching 
flow. 

12. Strong attenuation matching 
A less severe use of the low-frequency or narrow-channel assumption, is to simplify 

the determination of the matching (9.5). On a two-cycle excursion (beginning at the 
p junction, (i) going mouthwards into the p channel, (ii) continuing away from the 
mouth into the p , i  sub-channel, (iii) returning into the p channel, (iv) then away 
from the mouth into the p,I sub-channel, (v) and finally reaching the p junction 
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for a fifth time) the product attenuation would be ef)e!,{eiK)e:j. We shall assume 
that this product is very small for all combinations of routes and modes i, k ,  1, I, K ,  L. 
Equivalently, we assume that w < 471Af) and w < 4nA$ In this situation, the periodic 
matching (9.5) has the approximate solution 

M a ,  / a, \ 
(12.la) 

i=l I=1 m=l 

a, / M a ,  \ 

with 
M n a ,  

(12. l c )  
i=l k=l  I=1 

The first summation term on the right-hand side of equations (12.la,b) represents the 
transmission of the non-branching centroid displacement profile across the junction. 
The second summation term allows for the attenuation experienced since the previous 
crossing, which may have been relatively recent. The a-term accommodates a further 
return journey. In some simple cases [ l  -a] is the determinant for solving the periodic 
matching linear equations (9.5) and the solutions (12.la,b) are then exact. 

Over the full extent of the strong attenuation regime, the functions f r ) ,  f i i  defined 
in equation (7%) decrease in value by a factor of 1 6 ~ ~ .  Thus, any influence of 6GF) 
and dG:,\ upon the cycle-averaged shear dispersion will have become slight within the 
region of validity of the explicit expressions (12.14b). 

13. Cosine velocity profile 
For clarity of exposition, it is desirable that the particle-following matching across 

junctions should be achieved analytically rather than numerically. Unfortunately, for 
the merging of two circular cylindrical tubes with Poiseuille pipe flow (appropriate 
for smaller airways in the lungs), there would seem to be no alternative to a fully 
computational matching. For the quadratic-velocity-profile plane Poiseuille flow the 
particle-following matching involves the real root of a cubic equation which can be 
written explicitly. This section gives an estuarial example in which the matching is 
even more elementary. 

We shall neglect z-dependence, take the depth H to be constant across the flow 
and we specify cosine velocity and constant diffusivity profiles : 

( 13.1 a-e) 

In any individual channel p the width, depth, velocity and diffusivity scales B,  H ,  c, i2 
are assumed to be constant. Such a flow might be associated with a dredged channel 
for which increasing vegetation towards the sides slows the flow. The modes are the 
same and the velocity profile is similar to plane Poiseuille flow. 

The eigenmodes are trigonometric functions, with only even modes contributing to 

~ = ~ n c o s ( ; n y ) i i ,  1 i c 2 = 1 c ,  m l = I ,  r n 2 = ~ ,  m 3 = ~ .  
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y = l  

y=-1 

FIGURE 7. Cosine velocity profile and its zero plus second mode approximation 

the even velocity profile: 

v (2N+1)(y) = JZsin ( ( N  + +) ny)  , tp ‘ 2 N ) ( y )  = J2 cos( N n y )  , (13.2u, b)  

The first odd mode tp(” is the counterpart to the non-axisymmetric modes (7.3) for 
circular cylindrical tubes, in that it can arise only as a result of matching at the 
junctions. In the absence of branching, the formula ( 7 . 8 ~ )  for the shear dispersion 
and the corresponding single-term approximation are 

The next ( N  = 2) term is smaller by a factor of 200 than the N = 1 term. Figure 
7 shows that just the zero (uniform) and y(’] modes also suffice to approximate the 
velocity profile. 

The crucial property of this model problem is that the particle-following matching 
can be performed explicitly. We introduce an asymmetry parameter 4 such that 
fractions (1 + 4) /2  and (1 - 4)/2 of the volume flux go into the p, 1 and p.2 
sub-channels. The particle-following matching (3.5) has the explicit form 

2 
sin ( i n y p )  + -) for - 1 ,< y ,  ,< - arcsin($), (13.4~)  

77 1+q5 71 

2 3) for - 2 arcsin(q5) < yr  < 1 , (13.4b) 
71 1 - 4  71 

YG = - 2 arcsin (T sin ( i n y f l , l )  - 3) 
n 2 ’  

n (iny,,2) + 3) 2 .  

(13.44 

(1 3.4d) 

If we make a two-mode truncation by includin only the unforced first mode 
and the forced second mode, then there are eight Fr,; 8 1 ,  and eight E:ir) flood and ebb 
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matching coefficients to be evaluated. First we note that for the lower p, 1 sub-channel 

(13.5a) 

2 
(1 - 4 + 2sin (iny,))  for - 1 < y, < - arcsin($) (13.5~) 

n 
y(l)(y-) = ___ Jz 

pJ 1 + $ 

y'2'(y-) = Jz (-5+6$-$2-8(l-4)sin(~rcy,)  +4cos(nyp)) . (13.5d) ,J (1 + $ ) 2  

The integrals (8.2) for the p, 1 matching coefficients can be evaluated explicitly: 

12(1 - $)[n + 2arcsin($)] + 2(19 - 64 + $2)(1 - (52)1/2 
, (13.6g) E:f) = - 3n( 1 + $ ) 2  

(13.6h) 
6[n + 2 arcsin($)] - 2(8 + $ - 242 - 43)( 1 - (p2)1/2 

3n( 1 + 4)2 
Graphs of these p, 1 matching coefficients as functions of 4 were shown in figures 3 
and 4. Symmetry considerations allow us to deduce the corresponding p, 2 matching 
coefficients : 

(13.7a, d )  

EEf) = 

F(kA(4) 832 = ( - l ) k + r p )  8.1 ( -4 )  7 E,,i (k  1 )  ( 4 )  = ( - 1 ) k + q [ ) ( - 4 )  , 

14. Numerical examples 
Here we use the two-mode truncation for the cosine velocity profile, to calculate 

the results already displayed in figures 3, 4 and 6. For simplicity, we take the 
junction to be symmetric 4 = 0. By virtue of the symmetry there is much exact 
cancelling between the contributions from the sub-channels, in particular G$) = 0. 
The contributing matching coefficients have the values 

The FEi') coefficient has a suitably large value to generate a noticeable contribution 
in the 1 = 1 mode. To characterize the influence of flow oscillations we define a 
dimensionless frequency parameter : 

(14.2) 

For the first example, the sub-channels are specified as having areas and decay rates 
identical to those of the merged channel (A,,i = A,, = 1;)) as in the experiments 
of Paloski et al. (1987). 
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o =  

r6 

Position mouthward of junction 
x, 

FIGURE 8. Cycle-averaged, volume-following shear dispersion relative to the non-branched case 
when sinusoidal flow in branches with relative areas 1/2 merge at  a Y-junction. Particle-following 
matching yields the continuous curves while a well-mixed junction yields the dashed lines. 

For a given low-tide (minimum lung volume) position x within an excursion distance 
of a junction x,, we first use (9.2) to determine the phase angle 0; at which the 
volume-following frame of reference reaches the junction. The shorthand notation 
definitions (9.6), (10.1) allow us to evaluate the attenuations e f ) ,  e!!, e:! and the 
forced amplitude terms df), sf), A!!, $1. In the vigorous mixing case, we then 
have enough information to evaluate the six-term formula (10.2) or the numerically 
more robust first eight terms of the formula (9.7). Summations over the sub-channels 
merely require a doubling of the p, 1 contribution. If the mixing is not vigorous, then 
the strong-attenuation approximation (12.1) gives the starting values for the centroid 
displacement function amplitudes either side of the junction 6Gf), SG$ and hG$. 

Figure 6 compares the dimensionless shear dispersion (1 1.2) for well-mixed junctions 
and for the particle-following matching (14.1) when the dimensionless frequency has 
the values o, = 0,1,10,100. For well-mixed junctions (dashed curves) the dispersion 
at low frequencies is reduced but at high frequencies rises far above the no-junction 
value, particularly near the junction and near the excursion distance. For particle- 
following matching (continuous curves) the increase in dispersion at low frequencies 
can be linked to the presence of the non-symmetric I = 1 mode. At the excursion 
distance the particle-following matching nearly adjusts to the no-junction value. The 
inclusion of more modes would allow short scale adjustments to be more accurately 
represented. 

As a second numerical example, we consider a junction at which the total flow area 
remains constant + A,,J = A,/2.  The sub-channels are assumed to have areas 
half and decay rates twice those of the merged channel (2:; = 22f)). In figure 8 the 
greater increase in shear dispersion with increasing frequency near the junction than 
near the excursion distance, is related to the increase with frequency of the dispersion 
in the sub-channel relative to the merged-channel reference dispersion ??,(o, 00). On 
average throughout the junction-affected region the shear dispersion can be more 
than doubled relative to a non-branched flow. 
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15. Suggestions for further work 
It is the synchronism assumption for the leading-order flow in adjacent sub-channels 

that permits the use of a volume-following frame of reference. In that moving frame, 
shear dispersion in branched oscillatory flows could be presented as an extension of 
long established theory (Taylor 1953) for unbranched steady flows. Branching con- 
tributes to distortions across the flow (the volumetric centroid displacement function) 
and hence increases the shear dispersion (5.6). Non-synchronous ventilation (Schijf 
& Schonfeld 1953) deserves further theoretical and experimental investigation if only 
to demarcate the regimes in which synchronous and non-synchronous dispersion 
dominate. 

At several stages in the above calculations, selections were made for clarity of 
exposition. For example, branching need not be symmetric. For the cosine velocity 
with the two-mode truncation, all the necessary coefficients have been evaluated 
(13.6). The odd 1 mode in the merged channel, which is absent in the symmetric case, 
might cause qualitative changes from figures 6 and 8. Also, when secondary flows are 
important (Pedley & Kamm 1987) the selection of modes used in 4 7 is not appropriate. 
In particular, the eigenvalues, the consequent high- / low-frequency demarcation and 
the scaling laws for the reference value of the volumetric shear dispersion coefficient 
(unaffected by branching), would be dependent upon the strength of the secondary 
flows. 

Breathing involves air movement over many generations of the branching flow. 
The experiments of Paloski et al. (1987) allowed up to two generations movement. 
It would be straightforward to extend the results (9.3), (10.2) to accommodate a 
sinusoidal flow crossing many junctions. The matching (12.1) would also have to be 
extended. It is tempting to speculate that multiple junctions would give enhanced 
dispersion beyond that exhibited in figures 6 and 8 and towards the factor of 3 
increase as observed by Paloski et al. (1987). 

As noted in $1 3, the particle-following matching for lungs would require numerical 
solution for the Poiseuille pipe flow as it adjusts from two sub-channels to a single 
channel. This would allow the integrals (8.2) for the matching coefficients to be 
evaluated numerically. 

One facet of the many studies of high-frequency ventilation has concerned the effects 
upon gaseous exchange of waveform asymmetry between inhalation and exhalation. 
Most of the present paper allows for arbitrary periodic time dependence. In a 
two-mode truncation it would be tractable to explore non-sinusoidal flows. 

For blood oxygenators, vigorous mixing destroys the red blood corpusles. Yet to 
oxygenate efficiently, it is desirable to minimize longitudinal spread. The criterion 
(10.4) may help in the design of suitable oscillatory branched flows, e.g. in selecting 
the flow-splitting ratio and channel sizes which minimize the total spread at a given 
frequency. Similar considerations arise in chemical engineering applications. 

The focus of this paper has been upon the evaluation of the volumetric shear 
dispersion rather than upon its solution of the drift-diffusion equation (6.6). Recently, 
Bressloff, Dwyer & Kearney (1996a, b )  have given explicit methods for the construc- 
tion of point-release solutions for drift-diffusion on branched networks (trees) with 
identical constant-coefficient branches of arbitrary lengths and connectivities. Their 
modified Gaussian solutions quantify how a point tracer release at an interior posi- 
tion permeates into accessible branches. It would be useful if the methods derived by 
Bressloff et al. (19964 could be generalized to non-constant coefficients and applied 
to the model derived here (6.6) for transport in lungs and branched estuaries. 
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